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In this paper, the charge flipping method is proposed for ab initio structure

determination using neutron diffraction data alone. For this purpose, a new

variant of the dual-space iterative algorithm is introduced, which is called band

flipping. Unlike the basic algorithm, it reverses the sign of scattering density only

within a zero-centred band, develops large plateaus without forcing positivity,

and often leads to Babinet solutions. Its phasing power was tested on two

organic structures. These behave similarly when using X-ray diffraction data and

the basic algorithm but, with neutron data and band flipping, their solution

becomes orders-of-magnitude more difficult and strongly dependent on the

hydrogen content. Surprisingly, when the constraint of positivity is added,

convergence speeds up to the point where structure determination using

neutron diffraction data is not more difficult than the X-ray case. However, by

following the evolution of the R factor, such a solution can be easily missed, and

band flipping must be used both as a probe of convergence and as a tool for

developing negative densities. Apart from demonstrating the feasibility of

charge flipping for ab initio neutron crystallography, the present study also leads

to an important byproduct: the type of traps that occasionally block the iterative

process are identified and a mathematical analysis of their origin is given.

1. Introduction

The speed and availability of fast Fourier transform (FFT)

codes (Brigham, 1974; Frigo & Johnson, 1998) and the

increase in desktop computing power are changing the way

modern direct methods can approach the phase problem of

crystallography. Two recent examples for the structure deter-

mination of undersampled periodic objects are the difference

map (DM) and the charge flipping (CF) algorithms (Elser,

2003; Oszlányi & Süto��, 2004, 2005). These methods are

strongly related to the pioneering work of Gerchberg, Saxton

and Fienup on non-periodic objects in optics (Gerchberg &

Saxton, 1972; Fienup, 1982) and to density modification in

protein crystallography (Wang, 1985; Shiono & Woolfson

1992; Abrahams & Leslie, 1996; Zhang et al., 2001). The dual-

space iterative character of all these methods makes them

somewhat similar, but there are also a number of critical

algorithmic details that differ. At present, DM and CF algor-

ithms are not competitive with more complex multi-strategy

program packages such as SHELX, SIR or SnB (Sheldrick,

1997; Burla et al., 2005; Miller et al., 1993), but with an

increasing number of useful applications they can already

serve as complementary tools.

In this paper, we focus on the role of constraints in solving

the phase problem by the CF method (Oszlányi & Süto��, 2004,

2005). Recall that a truly ab initio case of structure solution

means the presence of real scattering density, the use of a

single non-anomalous data set up to high resolution and no

preliminary information on absolute scale, chemical compo-

sition, atom types or crystal symmetry. In this case, any set of

unknown phases is perfectly compatible with the measured

structure-factor moduli, and it is only the use of constraints

that will select the correct solution in the high-dimensional

phase space. Classical direct methods rely on the two very

efficient constraints of positivity and atomicity, both expressed

as statistical phase relations in reciprocal space. A dual-space

iterative process, such as charge flipping, has some more direct

options to prescribe properties of the scattering density in real

space. The observation that the electron density of the unit cell

is mostly empty even leads to a new type of constraint, we call

these plateaus, i.e. extended electron-density regions with a

nearly constant value. The presence of zero-valued plateaus –

seen as small ripples with high-resolution data – is not iden-

tical to atomicity and its use as a loose constraint seems to be

less efficient at first glance. However, it works remarkably well

in practice for periodic single crystals (Wu et al., 2004;

Oszlányi et al., 2006) and even powders (Wu et al., 2006;

Baerlocher et al., 2006, 2007). Its application in superspace has

also provided a method of structure solution for modulated

structures and quasicrystals (Palatinus, 2004; Zúňiga et al.,

2006; Palatinus et al., 2006; Katrych et al., 2007). This is a

significant achievement because the field of aperiodic struc-

tures cannot utilize three-dimensional atomicity, and for some

time it has badly needed a general single-pass method for



structure solution. In previous publications, the constraint of

plateaus was always coupled with positivity, which is a natural

combination with X-ray diffraction data. Here we shall study

the phasing power of plateaus alone, which could open the

way towards ab initio neutron crystallography.

The plan of the paper is as follows. First we shall briefly

describe the basic CF algorithm, then consider artificial and

physical cases of negative scattering density and define the

band version of the CF algorithm to treat the negative scat-

tering density of some atom types in neutron diffraction.

Later, we select two similar organic structures with medium

and high hydrogen content, and evaluate the algorithm

variants for these test structures. Our main conclusion is that a

substantial contribution of negative density does still allow

structure determination by flipping charge in a band, and by

opening up the space of negative scattering density we easily

see the Babinet solutions. However, it comes as a surprise that

adding the constraint of positivity can speed up the conver-

gence by orders of magnitude, but such a solution can be easily

missed without the use of the band CF as a probe. For the first

time, we also identify the traps that occasionally block the

iterative process and present a mathematical analysis of their

possible origin. Initially, these results were thought to be only

of theoretical interest but, with more intense new neutron

sources in sight, it is likely that ab inito structure solution by

using neutron diffraction data alone will become more wide-

spread in practice. At least, here is one more algorithm to help

this happen.

2. The basic charge flipping algorithm

The charge flipping algorithm is an iterative Fourier recycling

scheme that has been described in detail in our two recent

papers (Oszlányi & Süto��, 2004, 2005). The first introduces the

basic CF algorithm with the name-giving modification of low

electron density in real space, while the second defines a very

efficient version of the same scheme that complements the

exploration of phases by a perturbation of weak reflections in

reciprocal space. In the following, we shall summarize and

apply only the basic version of CF.
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Equation (1) shows one iteration cycle of the basic CF

algorithm. It requires high-resolution data within the resolu-

tion sphere (dmin � 0:8 Å) and the electron density repre-

sented on a sufficiently fine grid (�r< dmin=2). (However, with

simple structures or by estimating the intensity of reflections

beyond the sphere, this resolution requirement may be too

strict and can be significantly relaxed.) For initialization, Fð0Þ

is set to zero, and a random phase set is selected that satisfies

Friedel’s law ’ð�hÞ ¼ �’ðhÞ. Then structure factors are

created as FðhÞ ¼ FobsðhÞ exp½i’ðhÞ� and the electron density is

calculated by the inverse FFT. This �ðrÞ is the starting point of

the iteration cycle in real space. The first modification creates

a temporary electron density gðrÞ by changing (flipping) the

sign of �ðrÞ if it falls below a threshold � and leaving it

unchanged otherwise. The positive � is the only parameter of

the algorithm, its optimal value is a few percent of the

maximum electron density. In the next step, temporary

structure factors GðhÞ are calculated by the FFT. These

complex structure factors are then modified in different ways

to obtain the next approximation of FðhÞ. For observed

reflections, the phases are kept and the calculated moduli are

replaced by the observed ones. Reflections outside the reso-

lution sphere are reset to zero, while the forward scattering,

corresponding to the total charge, is accepted as is,

Fð0Þ ¼ Gð0Þ. Finally, the iteration cycle is completed by an

inverse FFT and a new �ðrÞ. This iteration process can

continue unconditionally, the R factor serves only for moni-

toring the progress. Convergence is indicated by a sharp drop

in R and at this point the iteration can be stopped.

It is obvious that, while the reciprocal half of the basic

algorithm simply prescribes the observed data, for the

exploration of phases the real-space flipping operation is

essential. The high-dimensional phase space can be viewed as

a dynamical system, where the algorithm defines the dynamics

that drives a given f’ðhÞg phase set as a point around. The

flipping operation is part of the dynamics, and acts as a

perturbation that simultaneously develops both positivity and

zero plateaus. It is important to note that, while the whole

process is deterministic, far from the solution it is also strongly

chaotic, the iteration path is extremely sensitive to the

slightest change of the starting or intermediate phases. With

some patience, the path can fall within the convergence region

of the solution, where the synchronization of phases occurs

quickly as a phase transition. The solution to be found is itself

degenerate and the degeneracy is determined by both trivial

symmetries of the diffraction data (i.e. shift, spatial inversion

and sign reversal of the scattering density) and space-group

symmetries of the crystal. Once such a solution is hit, it is

very stable against deterministic or random perturbations,

including the dynamics that has driven the phase set into this

state. The resulting structural model is also rather complete

and can easily be refined by standard least-squares programs.

As an even better approach, the electron density itself can be

refined by the program EDEN (Szöke, 1993, 2006) and the

atomic model can be created only afterwards.

Here we briefly summarize the main characteristics of the

CF method. The first is its extreme simplicity and easy

implementation. The second is its truly ab initio character. The

electron density is represented on a grid but the concept of

atoms is not acknowledged during the solution. Therefore, CF

makes no use of atom types, chemical composition or even the

total charge of the unit cell. There is no utilization of

symmetries either, all structures are allowed to float freely in

the space group P1. This means that the content of the whole

unit cell must be determined and not only that of the asym-

metric unit. The principle of such an algorithm differs a great

deal from that of both classical direct methods and global

optimization, it works without statistical phase relations or by

using any figure of merit as a cost function. Therefore, charge
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flipping is complementary to other direct methods, it can work

well in troublesome situations such as the presence of

pseudosymmetry or disorder. For the present work, it is also

important that in the basic CF algorithm the constraints of

positivity and plateaus are always coupled – in the following

we shall decouple these.

3. Negative scattering density

Before we try to handle negative scattering density, we must

make a clear distinction between its artificial and physical

forms. Artificial negative density is caused by resolution cut-

off and would disappear with infinitely high resolution data. In

X-ray diffraction, it occurs by the use of both unnormalized

FðhÞ or normalized EðhÞ structure factors, the latter leading to

higher positive peaks and an enhanced negative part. In

contrast, physical negative density comes from the contribu-

tion of some nuclei in neutron diffraction and would also

persist with infinite resolution data. Natural abundances of the

elements H, Li, Mn and Ti are the few examples that scatter

out of phase with the rest of the Periodic Table, without their

presence the original charge flipping algorithm would be

adequate also for neutron crystallography.

For a typical organic structure (example I of the following

tests), all three cases of negative density are shown in Fig. 1. In

these calculations, we first generated the ideal structure factors

up to 0.8 Å resolution, the isotropic displacement parameter

was set to zero. For normal X-ray and neutron data, we used

the corresponding atomic form factors and neutron scattering

lengths, while ideal E’s were calculated using point atoms

instead of the usual approximate normalization. Then a

Fourier inversion provided the finite resolution representation

of the scattering density on a 0.33 Å grid and, finally, these

volume samples were sorted and plotted in ascending order.

Even if X-ray and neutron calculations are on a different scale,

it is obvious that negative density is present in the increasing

order: X-ray F < X-ray E < neutron data. The basic CF

algorithm was not devised to handle negative density, so this

increase is expected to cause a serious problem. When the

positive maximum of all curves are scaled together, we can

notice another region that may affect how a given scattering-

density distribution responds to a given algorithm. This is the

region of positive upturn. A sharper upturn – as in the case of

normalized structure factors – means a smaller number of

large positive pixels and, hopefully, a smaller search space to

find the solution.

Considering that most direct methods operate with E’s

instead of F’s, it is a natural question whether their use leads to

faster convergence also with the charge flipping algorithm. We

can confirm that this is indeed the cased. A detailed study

would be a sidetrack here, but some convincing observations

are listed. For example, if we take the hard-to-solve test

structure of our second paper [CSD code gidjae (Karle et al.,

1987)] and a statistic of 100 runs of the basic CF algorithm, the

use of E’s is worth a 20-fold speed up with an optimal �
parameter. In other cases, this factor can be less and it also

depends on structural features. As an extreme, for regular

centrosymmetric crystals (like the test structures of the

present paper), we may experience no significant speed up, but

these are the cases that are easily solved already by the basic

CF algorithm. We conclude that sharpening is done for its

positive effect; in the act of increasing the large positive

electron density, it actually decreases the effective dimen-

sionality of the problem. Unfortunately, at the same time, it

also amplifies the artificial negative part of the scattering-

density distribution. At each charge flipping cycle, large

negative samples must change their sign, which is unnecessary

and can be harmful. The two effects of using E’s are always

coupled. Obviously, with X-ray diffraction data at high reso-

lution, the positive effect dominates and the only harm is the

smaller drop in the R factor at convergence. Finally, we

emphasize that the speed up experienced by the use of E’s also

applies for the higher efficiency �=2 version of the CF algor-

ithm (Oszlányi & Süto��, 2005). So for the solution of complex

structures, we can already utilize two independent (order-of-

magnitude) improvements that are additive!
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Figure 2
Scattering density of a typical organic structure (example I) represented
on a grid, pixels are sorted in ascending order. Left and right panels show
the different flipping regions of the basic and band CF algorithms.

Figure 1
Scattering density of a typical organic structure (example I) represented
on a 0.33 Å grid, pixels are sorted in ascending order. The three separate
subplots show artificial and physical cases of negative density calculated
by using X-ray F, X-ray E and neutron data at 0.8 Å resolution.



4. Band charge flipping

Now let us return to the case of physical negative density that

will surely require a new algorithm. The simplest approach is

to modify only the �! g step of the basic iteration cycle and

reverse the sign of the scattering density only within a fixed

½��;þ�� band. For a graphical comparison, Fig. 2 shows the

sorted scattering density samples of our first test structure and

the regions that are flipped by the basic and the band CF

algorithms. Band charge flipping had always been considered

as one of many algorithm variants, but as it relies only on the

constraint of plateaus it was found to be less efficient for X-ray

data than other versions that utilize positivity. However,

without positivity of the scattering density itself, such an

algorithm seems to be a natural choice, and its use has to be

reconsidered.

At the same time, we must realize that band CF is a

symmetric procedure, and from now on nothing fixes the sign

of the solution. Sign reversal of the scattering density is a

trivial symmetry of the diffraction data, the only difference

between the structure factors corresponding to þ� and �� is

the unobserved value of Fð0Þ. This ambiguity is well known in

optics and the occurrence of these so-called Babinet solutions

(Marks, 1999; Gilmore, 2000) is also expected in ab initio

neutron crystallography, especially when the total charge is

not used as a constraint. Furthermore, by opening up the space

for negative scattering density, a situation may emerge when

the contribution of false positive and negative densities add in

a way that blocks the progress of the iteration. A study and

analysis of these traps will be given later.

5. Test structures and runs

For a fair comparison of algorithm variants, we have selected

two very similar organic structures. Of course, a large number

of other alternatives was also tested, and the criterion for

selecting the two examples was not the maximum size but to

find a pair that makes the main point of the paper clear. The

most important parameters of the test structures are given in

Table 1. The two structures crystallize in the same common

space group, have a similar unit-cell volume and possess a

short b axis that is an advantage for graphical representation.

The main difference is their hydrogen content, which can be

considered as medium and high. In the neutron diffraction

literature, the fraction of negative scattering is defined as

Q ¼ 100
P

b2
H=
P

b2
i and the 27% value of example II is near

the limit of solvability experienced by other direct methods.

For the following tests, the amplitudes of X-ray and neutron

structure factors were generated up to 0.8 Å resolution, the

isotropic displacement parameter was set to zero and the

scattering density was represented on a real-space grid with

0.33 Å spacing. We already know that the charge flipping

algorithm tolerates well both noisy data and missing weak

reflections, the latter can even lead to a speed up of conver-

gence. Data completeness at large d spacing is another ques-

tion and can be a problem with experiments performed at

some spallation sources. So here we assume perfect data and

that the amplitudes of these strong envelope-defining reflec-

tions were observed.

The evolution of a single run can be followed by the R

factor, the total charge or the phase change and all three

quantities show a sharp drop at the point of convergence. We

prefer the use of the R factor for two reasons. First, it shows a

very short (�5–10 cycles) transient that can give some hint on

the correct selection of the � parameter. The ideal transient

shows a modest decrease of the R factor, a too large decrease

or an increase requires a larger or a smaller �, respectively.

Second, usually a rather featureless stagnation period follows,

in which, apart from small fluctuations, the R factor is nearly

constant. This flatness can be easily utilized to automate the

recognition of the drop occurring at the convergence. The

behaviour of the phase change is very similar to that of R, but

it comes from an expensive calculation in every second

iteration cycle that is a waste of time. Finally, the total charge

is a very interesting quantity and is available without further

calculation but in the stagnation period its value continuously

creeps downwards, which makes it less well suited for auto-

matic recognition of the solution. In the literature, some

remarks appeared regarding the absence of a stagnation

period (Wu et al., 2004). We confirm that this can occur with an

easy-to-solve structure and an optimal � parameter. It means

nothing else than the accidental selection of a starting phase

set that already falls within the convergence region. However,

in general the stagnation period is present and is an important

part of the iteration process.

The phasing power of different algorithms can be evaluated

and compared only on the basis of statistics. Therefore, for all

subsequent work, we have selected 100 random phase sets and

allowed 5000 iteration cycles for each run. The efficiency is

usually measured by two numbers, the success rate and the

number of iteration cycles up to convergence averaged over

the successful runs. In Appendix A, we also define a single

indicator, the number of iterations spent for a solution that is

used when the success rate is less than 100%. It can be

computed by choosing the maximum number of iterations

smaller and, thus, its use saves computer time.

The first set of runs using unnormalized X-ray data and the

basic CF algorithm should be considered as the point of

reference. The evolution of the R factor is shown in Fig. 3,

upper and lower panels correspond to examples I and II, while

the plots from left to right correspond to an increasing value of

the threshold parameter. (A range of parameters was exam-

ined, the plots are just a selection.) In both cases, the success
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Table 1
Parameters of the two test structures.

Columns: CSD code and original reference, space group, unit-cell volume,
chemical composition, fraction of negative scattering.

Code and ref. Space group V (Å3) Composition Q (%)

Example I caxhis01 (a) P21=c 2554.8 4C34H26O4 18.2
Example II diglou (b) P21=c 2418.9 4C27H36N2 26.9

References: (a) Becker et al. (1982); (b) Arduengo et al. (1999).



rate is 100% for a wide range of �, and with its optimal choice

the average number of iterations can be as small as 30 and 45

for examples I and II, respectively. This shows that the regular

centrosymmetric character of the two test structures is an easy

exercise for the basic algorithm.

The second set of runs was done using X-ray data and band

charge flipping. Without presenting a large number of further

plots, we can state the main observations. As expected, the

performance of band CF is inferior to the basic algorithm. The

range of � that gives 100% success rate is narrower, and even

with the best choice of � the average number of necessary

iterations goes up to 130 and 350 for examples I and II,

respectively. These numbers well illustrate that there is no

point of not utilizing positivity if the scattering density has this

property. For both sets of X-ray studies, one might naively

assume that the number of non-H atoms (152/116) is a rele-

vant parameter that determines the difficulty of the solution.

As we see here, other structural features are more important,

in fact, the solution of example II with fewer non-H atoms

takes more iterations for both algorithm variants.

The third set of runs was done using neutron diffraction

data and the band CF algorithm. Fig. 4 shows the evolution of

the R factor, subplots are arranged as in Fig. 3. Note that the

plot range of the iteration cycles was increased by a factor of

ten, and even with the best �, shown on the right, the success

rate is less than 100%. For examples I and II, the success rates

are 95 and 53%, and the numbers of iterations spent for a

solution are 400 and 5400, respectively. These numbers show

clearly that solving the neutron case is 13 and 120 times harder

than solving the basic X-ray case. Comparing the two exam-

ples, we can also check the effect of hydrogen content. For

the neutron case, the total number of atoms is very similar

(256/260) and the number of H atoms (104/144) that yield the

negative scattering density seems to have a marked effect on

the number of iterations required. Up to this point, nothing is

unexpected. Band charge flipping works for neutron data, the

larger number of atoms to be determined means that ab initio

neutron crystallography is much more difficult than the X-ray

case, and the larger number of H atoms further increases this

difficulty. In addition, we can easily see that the scattering

density of the solution is either positive or negative – these are

the expected Babinet solutions.

At this point of using neutron data, we switch back to the

constraint of positivity, which seems to be an odd idea

considering the large negative scattering density of our test

structures. The runs shown in Fig. 5 are actually combinations

of the basic and band CF algorithms, the exact protocol

followed was to run the basic algorithm for 500 iteration cycles

and then switch to the band version for another 100 cycles. As

before, upper and lower panels correspond to examples I and

II, while the subplots from left to right correspond to an

increasing value of the threshold parameter. There are a

number of surprises in these plots. First, the magnitude of the

sudden change of the R factor in the basic 500 cycles is much

smaller than in any of the previous studies. Second, this

sudden change is not always a drop: with a large � it is, with a

small � it is a step upwards, while in between there might be

nothing to be recognized. Third, any sudden change in this

period corresponds to the convergence, but the iteration

process might have converged even without the presence of

research papers
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Figure 4
6� 100 runs of using neutron diffraction data and the band CF algorithm.
Upper and lower panels correspond to test structures I and II, while plots
from left to right correspond to an increasing value of the � parameter.

Figure 5
6� 100 runs of using neutron diffraction data and a combination of the
‘basic + band’ CF algorithms. Upper and lower panels correspond to test
structures I and II, while plots from left to right correspond to an
increasing value of the � parameter.

Figure 3
6� 100 runs of using unnormalized X-ray data and the basic CF
algorithm. Upper and lower panels correspond to test structures I and II,
while plots from left to right correspond to an increasing value of the �
parameter.



such a sudden change. So what is the use of the last 100

iteration cycles? Here band charge flipping allows the devel-

opment of negative scattering density and only a few cycles are

needed for this to happen. If convergence is reached during

the application of the basic algorithm, these few cycles by the

band CF algorithm will finish the job, and convergence will be

undoubtedly signified by a large drop in the R factor. Other-

wise, the R factor might either stagnate at a higher level

without convergence or the drop may follow later, but the

latter means that it was really the band CF algorithm that

solved the structure. In the plots, we see the occurrence of all

three possibilities. So we can only accept that the structure was

solved by the basic algorithm if the following first few cycles of

band CF signify a large drop in the R factor, i.e. band CF must

be used just as a probe of convergence. Now let us see some

numbers characterizing the performance of the ‘basic + band’

CF combination. Again, the optimal choice of � is shown in the

rightmost plots. The success rate is 100% for both examples

and the number of iterations spent for a solution is 65 and 75

for examples I and II, respectively. We have made additional

tests by decreasing the number of basic cycles from 500 to 200

and observed the same large drop in the R factor. We have

also followed single runs, switched to band CF right after the

basic drop, and checked the isosurface plot of the resulting

scattering densities. These studies confirmed that the structure

was solved in all cases, as an illustration see Fig. 6. After the

drop observed during the basic cycles, the positive part of the

scattering density was already recognized, while the complete

structure developed in a few cycles.

The summary of this section is the following. Ab initio

structure determination by using neutron diffraction data can

be done by the combination of ‘basic + band’ CF. The

combined algorithm is so efficient that ab initio structure

determination by using neutron diffraction data becomes no

more difficult than the X-ray case. This is remarkable, if we

take into account the larger number of atoms, the presence of

negative scattering density and that the pure band CF algor-

ithm experienced orders-of-magnitude more difficulty.

6. Traps

A quick look at the upper panel of Fig. 4 (example I, neutron

data and band flipping) reveals a characteristic difference

between the first two and the last series of runs. In the first two

series of using smaller �, one can discern a broad distribution

of convergence times. In the last series with larger �, the

iteration either converges – and then more rapidly – or does

not converge at all. These unsuccessful runs were further

continued up to 100000 iteration cycles without observing

convergence. In this stagnation period, the scattering density

apparently did not move, it became a steady state, i.e. the

iteration process fell in a trap. Similar traps were observed

with both neutron and X-ray data and for both test structures.

Like the true scattering density, the steady state (trap) density

�, cf. equation (1), has a small support, it vanishes in a large

region of the unit cell. Apart from this property, the traps

observed in cases I and II are rather different. For test

structure I, decomposition of the real-space function into

positive and negative parts, �ðrÞ ¼ �þðrÞ � ��ðrÞ, where

�þ � 0, �� � 0 and �þðrÞ��ðrÞ ¼ 0, shows that the two parts

are approximate mirror images of each other: ��ðrÞ � �þðMrÞ,

where M is the mirror operation perpendicular to the mono-

clinic b axis. The true scattering density does not possess this

symmetry. Instead, in both structures, there is a c glide plane,

and for case II it is this symmetry element that shows up in the

trap density but without the complete space-group symmetry.

In the case of example I, the false symmetry also implies

Fð0Þ � 0 while, for example II, the total charge significantly

differs from zero. [Recall that the iteration lets Fð0Þ evolve

freely.]

Let us note that a low space filling is not an exclusive

property of trap densities; it generally characterizes the stag-

nating scattering density after the initial transient period. (But

the unit cell is emptier for the traps than for the true structure

or other temporary densities.) Whether such a density proves

to be a trap or after a period of stagnation there is a rapid

transition to convergence depends on the random initial

condition. The chaotic properties of the iteration process,

mentioned in Oszlányi & Süto�� (2004, 2005), certainly have to

do with the alternatives between stagnation and falling in a

trap. While the details are unclear to us, we believe we

partially understand how the algorithm favours the appear-

ance of densities of a low space filling. Combined with the

observed structure-factor moduli, any set of phases satisfying

the constraint ’ð�hÞ ¼ �’ðhÞ defines a real function. The

scattering density among them is distinguished by the fact that

its support occupies a small fraction, typically less than 10%,

of the unit cell. In other words, this is a function that is (nearly)

zero over an extended domain. Whatever the route to

convergence, band CF can tell the scattering density from any

other function satisfying the modulus constraint only via these

plateaus of zero. To see this, consider an ideal case when the

distribution of the scattering density on the grid, cf. Fig. 2, is a

step function with a wide step at zero level. If � is chosen to be

smaller than the smallest non-vanishing pixel value, the scat-

tering density is a fixed point of the band CF algorithm. In

realistic finite-resolution scattering densities, there are always

pixel values between �� and þ� and only the densities larger
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Figure 6
Reconstructed scattering density of the second test structure. Left and
right panels show views of the crystal and a single molecule along the
monoclinic b direction, while red and blue correspond to isosurface levels
þ� and ��.



in modulus thanþ� remain fixed after convergence, the values

within the band vary in a two-cycle period. One might think

that in the absence of homometric structures only the true

scattering density and its translates, spatial and sign inverted

pairs, exhibit the domain of zeros and are approximate fixed

points of the iteration. However, one never encounters such

fortunate cases.

Let �ðrÞ be the scattering density, and let FðhÞ be its Fourier

transform. Suppose that � can be written as �A þ �B, where

both components are real, have a plateau of zeros and the

supports of their Fourier transforms FA and FB are disjoint:

FAðhÞFBðhÞ ¼ 0 for every h. Then �AðrÞ � �Bð�rþ aÞ is a real

function that satisfies the modulus constraint and for most (if

not all) translations a it will still present an extended domain

of zeros in the overlap region of the respective plateaus of �A

and the translate of �B. A realization of this scenario is as

follows. Let

�Aðx; y; zÞ ¼
1

V

X

h;k;l

Fð2h; k; lÞ exp½�2�ið2hxþ kyþ lzÞ� ð2Þ

and

�Bðx; y; zÞ ¼
1

V

X

h;k;l

Fð2hþ 1; k; lÞ

� expf�2�i½ð2hþ 1Þxþ kyþ lz�g: ð3Þ

Then

�A xþ 1
2 ; y; z

� �
¼ �Aðx; y; zÞ

and �B xþ 1
2 ; y; z

� �
¼ ��Bðx; y; zÞ:

ð4Þ

Therefore,

�ðx; y; zÞ ¼ �Aðx; y; zÞ þ �Bðx; y; zÞ

and � xþ 1
2 ; y; z

� �
¼ �Aðx; y; zÞ � �Bðx; y; zÞ;

ð5Þ

from which we obtain

�Aðx; y; zÞ ¼ 1
2 �ðx; y; zÞ þ � xþ 1

2 ; y; z
� �� �

ð6Þ

and �Bðx; y; zÞ ¼ 1
2 �ðx; y; zÞ � � xþ 1

2 ; y; z
� �� �

: ð7Þ

Typically, the plateaus of � and of its translate will overlap,

thus both �A and �B will be real functions with zero plateau.

Therefore, re-adding them with a relative shift, sign change

and some symmetry element of the space group results in a

false solution, a function with a plateau, typical for densities in

the stagnation period. Other examples with shifts in two or

three directions (or with the superposition of more than two

shifted parts of the scattering density) can be constructed.

Applying a shift by 0 or 1/2 in any of the three directions and

combining the shifted function with the unshifted one

according to equations (6), (7), we can obtain seven different

pairs �A, �B. If the actual traps are really of the kind

�AðrÞ � �Bð�rþ aÞ, one can understand that they occur more

easily in the case of band flipping than with the original

algorithm which forces positivity.

Finally, we want to stress two points. First, at least for test

structure II, the most characteristic symmetry of the scattering

density – the c glide plane – decided the kind of a trap that

actually occurred. Second, the spatial stability of the trap

density corresponds to a kind of phase locking. This may be a

hint as to why the �=2 phase perturbation of weak reflections

described in Oszlányi & Süto�� (2005) helps to avoid the traps

and increases the success rate of the CF algorithm.

7. Summary

In the present paper, we demonstrated that the charge flipping

algorithm is able to solve structures using neutron diffraction

data alone. We first discussed artificial and physical cases of

negative scattering density, introduced a new version of the

basic dual-space algorithm and selected some organic test

structures with different hydrogen content. Band charge flip-

ping reverses the sign of scattering density only within a zero-

centred band and develops large plateaus without forcing

positivity. Our tests showed that, while it works well, structure

solution of neutron data with band flipping is orders-of-

magnitude more difficult than structure solution of X-ray data

with the basic algorithm. So we re-added the positivity

constraint and experienced a significant speed up of conver-

gence. The problem with such a solution is that it can be easily

overlooked; by following the evolution of the R factor, the

usual drop might be completely missing. Therefore, the band

flipping algorithm must be used both as a probe of conver-

gence and as a tool for developing negative densities. Only the

‘basic + band’ CF combination works reliably and fast, for our

organic test structures the average number of iterations

required by an X-ray and a neutron solution were similar.

This is a field that has both a long history and a promising

future (Wilson, 2000). Starting in the early 1970’s, it became

clear that classical direct methods can be applied with success

to neutron data (Sikka, 1969; Bernal & Watkins, 1972; Frey et

al., 1973; Hauptman & Langs, 2003). While the amount of

negative scattering contribution is an important parameter of

applicability, the real bottleneck was experimental. Even high-

intensity reactor sources required very large single crystals

and time-consuming experiments, so neutron diffraction was

used sparingly for accurate structural refinements and not as a

first choice for ab initio determination of unknown structures.

Future prospects of this field are bright and are mostly

determined by new developments of spallation sources. Their

high intensity and easy access should make neutron experi-

ments faster, bring down the required single-crystal size to

today’s X-ray average, and make ab initio neutron crystal-

lography a common practice. In this situation, new algorithms

specifically designed for structure solution using neutron data

alone should find their applications, especially if their working

principle differs from that of classical methods. Charge flip-

ping is one of the options.

Finally, the present study also led to an important by-

product. We could identify the traps that occasionally block

the iterative process, and gave a mathematical analysis of

their possible origin. This result is a starting point of further

research and might have relevance on how symmetry should

be handled and how the size limit of solvability can be

increased.
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APPENDIX A

Here we define �xxS, the number of iterations spent for a solution.

This is a single indicator of the difficulty an algorithm meets in

solving a structure with a success rate less than 100%. We

found it quite reliable even if it was computed by choosing the

maximum allowed number of iterations relatively small.

The calculation of run statistics requires the following

protocol. (i) Select N different random phase sets. N ¼ 100 is

a common choice. (ii) Set M, the maximum number of itera-

tion cycles allowed for a single run. M ¼ 5000 is the choice of

this paper. (iii) If the R-factor drop is large enough, then the

point of convergence can be detected and the iteration process

can be stopped. For each successful run, determine xi, the

number of iteration cycles where convergence occurs. (iv)

Count n, the number of runs that converge before the

maximum number of allowed iteration cycles is reached. (v)

The usual success rate is � ¼ n=N but its value is not used

here.

With these numbers, we can define �xxS. For 0 	 n 	 N, it

reads

�xxS ¼

P0
xi þ ðN � nÞM

n
; ð8Þ

where the prime indicates that the sum is only over the n

converged runs. In particular, if n ¼ 0 then �xxS ¼ 1, and if

n ¼ N then �xxS ¼ ð
PN

1 xiÞ=N is the usual average. This formula

expresses very directly the total number of iteration cycles

spent for a single structure solution. In other words, �xxS takes

into account both the useful iteration cycles of converged runs

and the wasted cycles of non-converged runs. If the distribu-

tion of the convergence times were exponential, thus, without

memory, �xxS would be the empirical mean value of the number

of iteration cycles in single runs up to convergence. However,

preliminary computations show that in the present case the

distribution of convergence times follows a power law, so this

number is nothing more than what its name says.

This research was supported by OTKA grants T043494 and
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Chapuis, G. & Steurer, W. (2007). J. Alloys Compd. 428, 164–172.
Marks, L. D. (1999). Phys. Rev. B, 60, 2771–2780.
Miller, R., DeTitta, G. T., Jones, R., Langs, D. A., Weeks, C. M. &

Hauptman, H. A. (1993). Science, 259, 1430–1433.
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Zúňiga, F. J., Palatinus, L., Cabildo, P., Claramunt, R. M. & Elguero, J.
(2006). Z. Kristallogr. 221, 281–287.
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